
Convolution Neural Network Based Priority Prediction Approach for GitHub Issues

D.A.P. Madubashini 1 and C. Wijesiriwardana1*

1Faculty of Information Technology, University of Moratuwa

*Corresponding Author: chaman@uom.lk || ORCID: 0000-0002-1124-425X

Received: 15-02-2022 ∗ Accepted: 07-12-2022 ∗ Published Online: 31-12-2022

Abstract—A bug report is an important document that outlines
software problems that result in unexpected errors or wrong out-
comes. In large software projects, a high number of bugs are
reported daily, which needs to be systematically analyzed. Predict-
ing the priority level of reported bugs, assigning an appropriate
developer, finding duplicate issues, and predicting bug resolving
time are some of the critical tasks in the bug analysis process. Due
to the inherent complexity of the bug analyzing process, manual bug
investigation requires a significant amount of time, resources, and
effort. Therefore, the need to establish automated or semi-automated
approaches for assessing bug reports is extensively discussed in the
literature. This research presents a novel approach to prioritize the
bug reports by exploiting a Convolutional Neural Network-based
approach. Furthermore, this research investigates the impact of both
textual and categorical features of bug reports in improving the
accuracy of priority prediction. The experiments were conducted
by extracting the bug reports available in three GitHub repositories.
The evaluation results confirm that the use of categorical features
does not have an impact on the accuracy of the priority prediction
of bug reports. Furthermore, it was observed that better prediction
accuracies are shown for the datasets extracted from Bugzilla than
GitHub repository.

Keywords—Git issues, GitHub API, Priority prediction, Word
Embedding, Convolutional Neural Network (CNN)

I. INTRODUCTION

Software developers record the bugs and the issues of
software projects in bug reports as a common practice, which
are stored in bug tracking systems such as Bugzilla or Jira.
For instance, the Mozilla bug repository keep track of more
than 670,000 bug reports with nearly 130 new bug reports
add up each day [Shu et al., 2019]. Similarly, the Eclipse bug
database contains over 250,000 bug reports with nearly 120
new bugs added each day [Uddin et al., 2017]. Therefore,
ultimately software maintenance time and cost increase with
this large number of bugs reported every day. Bug triaging
is considered important in software maintenance and testing,
which consists of several critical tasks such as predicting the
priority level of reported bugs, assigning an appropriate de-
veloper, finding duplicate issues, and predicting bug resolving
time.

Bug prioritization is vital, particularly in open-source
projects because it is a measure of the responsiveness of
the project [Kanwal & Maqbool, 2012]. The manual bug
prioritization process is considered effort-intensive, time-
consuming, and error-prone. As a result, bug reports can
be assigned with incorrect priority levels [Umer et al.,
2019]. Incorrect estimations of priority levels may result in
ineffective utilization of resources, for instance by fixing less
important bugs first [Almhana, R., & Kessentini]. Therefore,
the need for automatic bug prioritization has been signif-
icantly investigated in the literature. Previous studies have
attempted to address this issue by using various technologies
like machine learning and neural networks [Baarah et al.,
2019], [Malhotra et al, 2021], [Ramay et al., 2019]. These
approaches are either based on textual features or categorical
features.

In this research, we propose a Convolution Neural
Network-based bug report priority prediction approach by
considering both textual and categorical features. A similar
study was conducted by [Umer et al., 2018], by only con-
sidering textual features such as ’summary’ and ’description’
of the bug reports. This research intends to investigate the
impact of categorical features (i.e., severity, product, compo-
nent, operating system, author) when used in combination
with textual features in prioritizing the bug reports. The
experiments are conducted on the bug reports of open-source
projects found in GitHub Issues, which is a lightweight issue-
tracking system that is available in all GitHub repositories.
It is expected to address the following Research Questions
(RQs):

RQ1: Do categorical features impact the accuracy of the
priority prediction of bug reports when used in combination
with textural features?

RQ2: Is it recommended to use bug reports from GitHub
repository for priority prediction over the bug reports avail-
able in standard bug repositories such as Bugzilla?

The remainder of this paper is organized as follows.

Copyright ©2022 belongs to Faculty of Technology, South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

Madubashini and Wijesiriwardana | SLJoT

Section 2 presents the Related Work of this research followed
by the proposed Approach in Section 3. The Evaluation of
the results is presented in Section 4. We conclude in Section
5 together with the Future works.

II. RELATED WORK

An extensive amount of research work reported on differ-
ent bug analysis approaches to predict the priority level of
bug reports, including a collection of comprehensive survey
reports.

The work presented by [Alenezi and Banitaan, 2013]
prioritized the bug reports using two feature sets. They have
evaluated the problem as a classification task using a De-
cision tree, Random Forests, and Naive Bayes classification
algorithms. In this work, bug reports are classified into three
categories: high, medium, and low and describe the feature
sets under investigation. As the results, they mentioned
Random Forest and Decision Tree both outperformed Naive
Bayes in categorization. In terms of Precision, Recall, and F-
measure, feature-set-2 outperformed feature-set-1 by a large
margin. As further work they have mentioned, more research
is needed to see how different combinations of characteristics
affect categorization accuracy.

Another study [Kanwal and Maqbool, 2012] conducted
aimed at automating the process of assigning bug priority
to incoming bug reports in a bug repository, they proposed
a bug priority classifier that compares the results of SVM
and Naive Bayes classification methods. The experimental
data show that SVM outperforms Naive Bayes in terms of
overall performance. Also, when the extensive description
of an issue is not included as a feature, the Naive Bayes
classifier performs better.

DRONE approach aims at predicting the priority level
of bug reports by using multi-factor analysis. It used a
Linear regression approach to predict the priority of the bug
report [Tian, 2017]. There are two parts to this approach:
training and prediction. The feature extraction module and
the categorization module are the two main modules. As the
limitations they mentioned, collecting enough training data
to create a useful prediction model is quite difficult, and
its technique may suffer from the cold start problem when
used on new or small projects. Also, DRONE’s performance
across all priority levels isn’t consistent, and it could be
better. For future work, they suggested building a linear
regression model with only the most discriminative features
and evaluating the output.

The work presented by [Choudhary and Singh, 2017]
proposed a neural network-based approach for priority pre-
diction. Their approach contains a method to obtain infor-
mation from neighbor bug reports or other outside sources
and used to generate an output signal that is sent to other
units. They proved that the MLP-based strategy is especially
effective when it comes to categorizing distinct priorities. But
this study only employed five versions and three products
of the Eclipse project. As the future work, they suggest
that different Eclipse products and versions, as well as

Mozilla and other third-party products, be used, and that
cross-components be applied by building an Eclipse global
dictionary

III. APPROACH

Figure 1 presents the high-level architecture of the pro-
posed approach to prioritize the bugs that are extracted
from Github, which contains four main subsections: feature
extraction, pre-processing, word embedding, and priority
prediction.

A. Data and Feature Extraction

The priority is an important feature of a bug report because
it indicates how quickly it should be fixed. Bug reports are
frequently sent, either with an inaccurate priority level or
without stating a priority level. Developers manually repair
or assign the priority of each issue report after reading them.
Manually prioritizing bug reports necessitates knowledge and
resources. As per the literature, it was decided to utilize the
following discriminative features on bug reports in GitHub
[Tian et al., 2013].

Severity: Basically, severity determines the customers,
whereas developers determine priority. When a developer
assigns a priority level to a bug report, the severity stated by
users has an impact, but it’s not the only factor to consider.
For example, while a bug being corrected may be a serious
issue for a specific reporting, it’s possible that the eclipse
team shouldn’t fix it.

Author: If there is a pattern as an author consistently
reports high-priority problems, he or she may continue to
do so in the future. Furthermore, the more defects a user
reports, the more accurate his or her bug severity assessment
will be.

Priority: The priority of a bug report/issue defines how
soon to fix it. High priority will be assigned for the critically
important bugs whereas low priority will be given otherwise.

Related report: This feature shows the possibility of
having the same priority for similar issues. It calculates by
comparing the textual features.

Sentiment value: Calculate the emotion of each bug report
to categorize whether the reporter’s emotion is good or
negative

B. Pre-processing and Word Embedding

Irrelevant and unwanted text, such as punctuation, can be
found in bug reports. Feeding irrelevant text into classifica-
tion algorithms is an overhead, since it lengthens processing
time and consumes more memory. NLP techniques are used
to preprocess git issues such as tokenization, stop-word elim-
ination, negation handling, spell correction, modifier word
recognition, word inflection, and lemmatization are popular
NLP techniques used to preprocess git issues.

Next, a vector for each git issue is created. We feed the
preprocessed words w1, w2, ..., wn into a word embedding
model. Bag Of Word (BOW) is the model that creates the
vocabulary, a list of words that occurred in the git issue

Copyright ©2022 belongs to Faculty of Technology, South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka 26

Madubashini and Wijesiriwardana | SLJoT

Figure 1: High-level Architecture of the Proposed Approach

description, where each word has its own index. This makes
it possible to create a vector for each summary. Then we
count each occurrence in the vocabulary using the summary
we wish to vectorize. The resulting vector will contain the
vocabulary’s length as well as a count for each word in the
vocabulary. A feature vector is the product of this process.
Each dimension of a feature vector can be a numeric or
category feature. Each word is represented as a vector in the
word embedding model. Text can be vectorized in a variety
of ways, including:

• Each word is represented as a vector.
• Each character is represented as a vector of characters.
• N-grams of words or characters (N-grams are over-

lapping groupings of numerous succeeding words or
characters in the text) depicted as a vector

Unlike one-hot encoding, which is hardcoded, this ap-
proach represents words as dense word vectors (also called
word embeddings) that are trained. This implies that word
embeddings acquire more data in fewer dimensions.

C. Priority Prediction

An autonomous approach is used for bug report priority
prediction, where a particular priority level is assigned for
each bug report. The proposed approach uses textual features
together with a set of categorical features such as severity,
author, the priority of related report and sentiment value in
the CNN. The selection of CNN is based on the following
reasons: CNN uses the vector concatenation method to con-
catenate incoming inputs into one long input vector, CNN
layers may learn the deep semantic relationships between
input words, CNN significantly reduces training time due to
its capability for parallel computation on modern powerful
GPU and CNN may use different filter size filters that avoid
the exploding gradient problem of recurrent neural networks.

IV. EVALUATION

Git issues are selected from two GitHub repositories (i.e.,
Angular and WSO2 Product-IS) and one Bugzilla repository
(i.e., Eclipse). The extracted GitHub issues labelled as “bug”
from GitHub repositories using GitHub API and Node.js
libraries. We’ve only included GitHub issues that are marked

Table I: Number of issues

Repository name Number of issues
Eclipse 3,060
Angular 1,081
WSO2 product IS 449

Table II: Priority distribution

Priority level Eclipse WSO2 Product IS Angular
P1 0 102 0
P2 281 0 82
P3 2,139 14 540
P4 53 127 459
P5 13 201 0

as CLOSED since their priorities have been mentioned. Then
fetched the above-mentioned attributes from each bug and
added this data to a CSV file. Table I shows the number of
git issues extracted from each repository.

There are five class labels namely P1, P2, P3, P4, and P5.
Table II shows the distribution of git issue priority levels in
each repository.

The evaluation process is conducted as follows. To answer
RQ1, first, bug reports are extracted from GitHub repositories
(i.e., WSO2 Product-IS and Angular) and applied NLP tech-
niques to preprocess the text features of bug reports. Then
partition the dataset as a training and testing dataset. The
training part is used to train the CNN model and the testing
part remains until the testing phase. Given a bug report, its
performance is evaluated by using specific precision, recall,
and F1-score.

Figure 2: Priority prediction accuracy with and without categorical feature for WSO2
Product-IS (on the left) and Angular (on the right)

Figure 2 shows the proposed CNN based priority predic-
tion gives 43%, and 63% accuracies respectively for WSO2

Copyright ©2022 belongs to Faculty of Technology, South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka 27

Madubashini and Wijesiriwardana | SLJoT

Product-IS and Angular without considering the categorical
features such as severity, the priority of the related report,
author, and sentimental value. However, when it is used with
the categorical features, the prediction accuracy decreases
to 18% and 19% respectively. Thus, in answering RQ1,
it is evident that the inclusion of the categorical features
does not increase the prediction accuracy, hence it is not
recommended to use categorical features in combination with
textual features as per the experimental results. Furthermore,
we compared our approach with the previous work reported
by Umer et. al [9] to validate the proposed CNN based
priority prediction model in terms of precision, recall and
F1-score. As presented in Figure 3, it was evident that both
approaches perform at more or less a similar accuracy.

Figure 3: Comparison with an existing approach reported by Umer et. al [4]

To evaluate RQ2, the experiment was conducted for
Eclipse bug reports that are extracted from the Bugzilla
database. Based on the experimental results, as shown in
Figure 4, it was observed that the accuracies of GitHub
repositories are quite less than the Bugzilla repository. Thus,
it is recommended to use standard bug repositories such as
Bugzilla in predicting the priority of bug reports. However,
to overcome the situations where the researchers do not have
access to standard commercial bug tracking systems, it is
recommended to make use of GitHub issues by further fine-
tuning our experimental approach.

Figure 4: Prediction Accuracy of Bugzilla Repository (Eclipse) Vs GitHub Repository
(Angular and WSO2 Product-IS)

V. CONCLUSION AND FUTURE WORK

This research intended to answer two important research
questions to experimentally find out the impact of the cat-
egorical features in predicting the priority of bug reports

and to observe the suitability of different issue tracking
repositories for the same purpose. The experiments were
conducted on bug reports extracted for three software systems
(i.e., Angular, Eclipse, WSO2 Product-IS) selected from
two repositories (i.e. GitHub and Bugzilla). As per the
evaluation results, it was observed that the introduction of
categorical features does not impact the prediction accuracy.
Rather, it shows better prediction accuracies when not using
categorical features together with textual features. Besides, as
per the second experiment, it was noted that better prediction
accuracies are shown for the datasets extracted from Bugzilla
than GitHub repository.

Since CNN gives the semantic relationship between fea-
tures, it is difficult to find relationships between numerical
features. Therefore, as further work, it is expected to inves-
tigate a regression-based approach by further utilizing new
features such as bug time-stamps, product names.

REFERENCES

Alenezi, M., & Banitaan, S. (2013, December). Bug reports
prioritization: Which features and classifier to use?. In
2013 12th International Conference on Machine Learn-
ing and Applications (Vol. 2, pp. 112-116). IEEE.

Almhana, R., Kessentini, M. (2021). Considering depen-
dencies between bug reports to improve bugs triage.
Automated Software Engineering, 28(1), 1-26.

Baarah, A., Aloqaily, A., Salah, Z., Zamzeer, M., & Sallam,
M. (2019). Machine learning approaches for predicting
the severity level of software bug reports in closed
source projects. International Journal of Advanced
Computer Science and Applications, 10(10.14569).

Choudhary, P. A., & Singh, S. (2017). Neural Network
Based Bug Priority Prediction Model using Text Classi-
fication Techniques. International Journal of Advanced
Research in Computer Science, 8(5).

Kanwal, J., & Maqbool, O. (2012). Bug prioritization to
facilitate bug report triage. Journal of Computer Science
and Technology, 27(2), 397-412.

Malhotra, R., Dabas, A., Hariharasudhan, A. S., & Pant, M.
(2021, January). A study on machine learning applied
to software bug priority prediction. In 2021 11th Inter-
national Conference on Cloud Computing, Data Science
& Engineering (Confluence) (pp. 965-970). IEEE.

Ramay, W. Y., Umer, Q., Yin, X. C., Zhu, C., & Illahi, I.
(2019). Deep neural network-based severity prediction
of bug reports. IEEE Access, 7, 46846-46857.

Shu, R., Xia, T., Williams, L., & Menzies, T. (2019). Better
security bug report classification via hyperparameter
optimization. arXiv preprint arXiv:1905.06872.

Tian, Y. (2017). Mining software repositories for automatic
software bug management from bug triaging to patch
backporting.

Copyright ©2022 belongs to Faculty of Technology, South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka 28

Madubashini and Wijesiriwardana | SLJoT

Uddin, J., Ghazali, R., Deris, M. M., Naseem, R., & Shah,
H. (2017). A survey on bug prioritization. Artificial
Intelligence Review, 47(2), 145-180.

Umer, Q., Liu, H., & Illahi, I. (2019). CNN-based automatic
prioritization of bug reports. IEEE Transactions on
Reliability, 69(4), 1341-1354.

Umer, Q., Liu, H., & Sultan, Y. (2018). Emotion based
automated priority prediction for bug reports. IEEE
Access, 6, 35743-35752.

This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if
changes were made. Te images or other third party material
in this article are included in the article’s Creative Com-
mons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

Copyright ©2022 belongs to Faculty of Technology, South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka 29

